『しくみがわかるベイズ統計と機械学習』正誤表(2020.7.28 更新)

【第1刷】

pg.122 の式 6.14 にて、 $\mathbf{z}^{(i)}$ は one-hot ベクトルのため、 $p(\mathbf{z}^{(i)}|\boldsymbol{\pi})$ に多項分布を代入するよりもマルチヌーイ分布を代入する方が望ましいです。その場合、式 6.14 は以下になります。

$$\mathbb{E}_{p(\boldsymbol{z}^{(i)}|x^{(i)},\hat{\boldsymbol{\theta}})} \left[\log p(\boldsymbol{z}^{(i)}|\boldsymbol{\pi}) \right] = \mathbb{E}_{p(\boldsymbol{z}^{(i)}|x^{(i)},\hat{\boldsymbol{\theta}})} \left[\log \left(\prod_{j=1}^{k} \pi_{j}^{z_{ij}} \right) \right]$$
(1)
$$= \mathbb{E}_{p(\boldsymbol{z}^{(i)}|x^{(i)},\hat{\boldsymbol{\theta}})} \left[\sum_{j=1}^{k} z_{ij} \log \pi_{j} \right] = \sum_{j=1}^{k} \mathbb{E}_{p(\boldsymbol{z}^{(i)}|x^{(i)},\hat{\boldsymbol{\theta}})} \left[z_{ij} \right] \log \pi_{j}$$

pg.156 の式 7.29 の直後の段落にて、 ζ は ξ であり、 ϕ は ψ です。

pg.174, 図 8.4 の説明文の 3 行目、不等号が逆になっていました。

誤:

もし
$$rac{q(oldsymbol{x}^{(t)}|oldsymbol{\check{y}})b(oldsymbol{\check{y}})}{q(oldsymbol{\check{y}}|oldsymbol{x}^{(t)})b(oldsymbol{x}^{(t)})} \leq \check{z}$$
 であれば

正

もし
$$rac{q(oldsymbol{x}^{(t)}|oldsymbol{\check{y}})b(oldsymbol{\check{y}})}{q(oldsymbol{\check{y}}|oldsymbol{x}^{(t)})b(oldsymbol{x}^{(t)})}\geq \check{z}$$
 であれば

pg.152 の下から 3 行目:

誤:

ψ, β, κ, ξ はパラメータについてのパラメータであるので

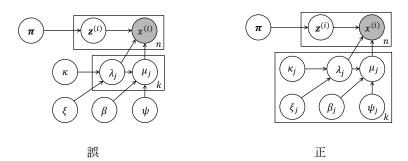
正:

 ψ, β, κ, ξ はパラメータについてのパラメータであるので

pg.152-159, \boldsymbol{x} と \boldsymbol{z} の分布のパラメータとして現れる ψ , β , κ , ξ はベクトルあるいはその成分に直す必要があります。

誤	$p(\boldsymbol{x},\boldsymbol{z},\boldsymbol{\mu},\boldsymbol{\lambda} \boldsymbol{\pi},\psi,\beta,\kappa,\xi)$	$p(\boldsymbol{\mu}, \boldsymbol{\lambda} \psi, \beta, \kappa, \xi)$	$p(\mu_j, \lambda_j \psi, \beta, \kappa, \xi)$	$\mathcal{NG}(\mu_j, \lambda_j \psi, \beta, \kappa, \xi)$
正	$p(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\mu}, \boldsymbol{\lambda} \boldsymbol{\pi}, \boldsymbol{\psi}, \boldsymbol{\beta}, \boldsymbol{\kappa}, \boldsymbol{\xi})$	$p(\boldsymbol{\mu}, \boldsymbol{\lambda} \boldsymbol{\psi}, \boldsymbol{\beta}, \boldsymbol{\kappa}, \boldsymbol{\xi})$	$p(\mu_j, \lambda_j \psi_j, \beta_j, \kappa_j, \xi_j)$	$\mathcal{NG}(\mu_j,\lambda_j \psi_j,eta_j,\kappa_j,\xi_j)$

pg.153, 図 7.2:



pg.159-162, ψ は ψ_j 、 β は β_j 、 κ は κ_j 、 ξ は ξ_j に直す必要があります。

pg.175, 式 8.12 の第 1 行:

誤:

 $\alpha(\boldsymbol{y}, \boldsymbol{x}) q(\boldsymbol{x}|\boldsymbol{y}) \pi(\boldsymbol{y})$

正:

 $\alpha(\boldsymbol{y}, \boldsymbol{x}) q(\boldsymbol{y} | \boldsymbol{x}) \pi(\boldsymbol{y})$

また、より詳しくした説明として、pg. 174 の下から 2 行目「これを使って以下の式変形が行える。」を補うと以下になる。

 $m{x}$ から $m{y}$ に遷移する確率は MH 法の定義より $q(m{y}|m{x})$ と $\alpha(m{x},m{y})$ の積となるため、 $p(m{y}|m{x})=\alpha(m{x},m{y})q(m{y}|m{x})$ である。これらを使って以下の式変形が行える。

pg.188, 式 9.7 の最終 2 行:

誤:

$$\begin{split} &= \frac{1}{2} \sum_{j=1}^k \left(-\log \sigma_j^2 - 1 + \frac{2\mu_j^2}{\sigma_j^2} - \frac{\mu_j^2}{\sigma_j^2} + \frac{1}{\sigma_j^2} \right) \\ &= \frac{1}{2} \sum_{j=1}^k \left(-\log \sigma_j^2 + \frac{\mu_j^2 + 1}{\sigma_j^2} \right) + \frac{k}{2} \end{split}$$

正:

$$= \frac{1}{2} \sum_{j=1}^{k} \left(-\log \sigma_j^2 - 1 + \frac{2\mu_j^2}{\sigma_j^2} - \frac{\mu_j^2}{\sigma_j^2} + \sigma_j^2 \right)$$
$$= \frac{1}{2} \sum_{j=1}^{k} \left(-\log \sigma_j^2 + \frac{\mu_j^2}{\sigma_j^2} + \sigma_j^2 \right) - \frac{k}{2}$$

4

pg.188, 式 9.7 の直後の説明:

誤:

$$\mathbb{E}_{\mathcal{N}(z_j|\mu_j,\sigma_j^2)}\left[z_j^2\right] = 1/\sigma_j^2$$
 を使った。

正:

$$\mathbb{E}_{\mathcal{N}(z_j|\mu_j,\sigma_j^2)}\left[z_j^2
ight] = \sigma_j^2$$
 を使った。

pg.189, 9.2.4 節の第2行:

誤:

 $p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})$

正:

 $p_{\boldsymbol{\theta}}(\boldsymbol{z})$

pg.196, 章末問題解答における問 3-3 の解答:

誤:

3-3:

$$p(x=$$
 甘い $|y=$ 出る $)=rac{p(x=$ 出る $|y=$ 甘い $)p(y=$ 甘い $)}{p(x=$ 出る $)}=rac{0.6\cdot 0.1}{0.15}=0.4$

正:

3-3:

$$p(x=$$
 甘い $|y=$ 出る $)=\frac{p(y=$ 出る $|x=$ 甘い $)p(x=$ 甘い $)}{p(y=$ 出る $)}=\frac{0.6\cdot0.1}{0.15}=0.4$